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Introduction

Why EarthCARE? (launch in 2018)

- instrumental setup to retrieve aerosol and
cloud properties in 3D

- simulate outgoing radiative fluxes
and compare against measurement-based
fluxes (radiative closure)

- assume good understanding of
cloud-aerosol-radiance interaction for
difference of < 10 W/m2

Focus on clear-sky scenes

- homogeneous cases should pose little
difficulties to radiative closure assessment

- for best cloud assessment in semi-transparent
or broken cloud fields, ensure that cloud-free
portions are handled well

. optimize SW clear-sky radiance-to-flux
conversion

http://www.esa.int/

Why Broadband Radiometer (BBR)?

- measures radiances over solar (SW) and
total (SW+thermal) broadband spectrum

- at three viewing angles:
nadir, 55◦ for- & backward

Why do differently than CERES?

- BBR with reduced viewing geometry
- no MODIS-like data available
- simpler representation is desireable
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Introduction

/ The regression task & CERES ADMs
CERES SSF ADMs

- sev. years of SW radiance obs.
- over land surfaces

- an ADM per calender
month and regional bin
(1◦x1◦)

- per interval of TOA NDVI
and elevation variability

- over ocean surfaces
- an ADM per interval of
10m wind and AOD

- angular bins
(2◦ SZA, RAA, VZA)

- resulting in several 100 ADMs

- using MODIS-based products
(not available in EarthCARE)

The regression task

- measuring TOA SW radiance with the BBR

- want to predict TOA SW flux (all radiance
leaving through upward hemisphere)
F ∼ I

- problematic: surface and atmosphere contribute
to TOA anisotropy

- ideally: have parameters providing information
on a scene’s anisotropic nature

- alternativly:
find auxiliary variables explaining differences
between CERES ADMs and use as input for
regression (e.g. in ANN)

F = f (I , . . . )
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Introduction

/ Goals and limitations of this study
We aim for...

- a simpler representation of CERES ADMs without MODIS support

- on the other hand, new auxiliary data will be needed
(we want to find out which ones are essential)

- to establish and optimize radiance-to-flux conversion
(e.g. using Artificial Neural Networks as regression tool)

Limitations

- three EarthCARE BBR viewing direction (nadir, 55◦ for- & backward)
- CERES footprints of pure IGBP type (66% of all clear-sky
observations, 4 Mio. samples)
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Methodology & Data

/ Extracted geophysical parameters
- TOA SW radiance measurements along with
viewing geometry
(CERES SSF Edition 4 [Su et al., 2014])

- surface type & state
- IGBP [Townshend, 1992]

- ERA 20C reanalysis [Hersbach et al., 2015]

- as substitute to future X-Met data
- status of vegetion, snow & sea-ice

- MOD43B BRF climatology
[Schaaf et al., 2002, Zhipeng Qu, 2014]

- derive VIS/NIR albedo and anisotropy
over land surface

- atmospheric state
- ERA 20C (10m wind, total ozone. TCWV)
- AeroCom clim. [http://aerocom.met.no/]

- output: TOA SW Flux
(estimated in CERES SSF Edition 4)

B find the essential parameter subset for
optimal radiance-to-flux conversion using
Artificial Neural Networks
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Results

Variable importance metrics

Random Forest Regression

- multiple decision trees
- use of aux. data for split nodes
- at each leaf (each end of a
tree):

F ∼ I + I 2 | w10m,AOD, ...

- permutation test measures
importance of each aux. variable

Linear Model with
Genetic Algorithms

- using aux. data as direct proxy
for anisotropy

- search algorithm determines
best aux. data subset

F ∼ I (w10m + ...) + I 2(...)

Observations

- inclusion of:
- aux. variables
related to viewing
and illumination
geometry

- AOD
- land surface BRDF
and albedo

- exclusion of:
- most ERA surface
parameters

- uncertain about:
- ERA ozone &
TCWV

- ERA 10m wind
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Results

Optimization of ANNs for rad-to-flux conversion

- optimal subset of aux. data with best performance on
predicting CERES fluxes
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Results

Optimization of ANNs for rad-to-flux conversion

- satisfying performance for EarthCARE-like geometry
(red shaded area)
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Results

Optimization of ANNs for rad-to-flux conversion

- overall good performance, except for very mountainous terrain
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Results

Optimization of ANNs for rad-to-flux conversion

- similarly high perf. for other sfc. types, except for Fresh Snow
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Results

Uncertainty over Fresh Snow

- above CERES inconsistencies
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Results

Uncertainty over Fresh Snow

- for non-EarthCARE geometries
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Results

Uncertainty over Fresh Snow

- uncertainty refl. in parameter choice
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Summary & Conclusions

/ Wrap up...

In summary...

+ for TOA SW clear-sky rad-to-flux conversion in
EarthCARE

- aimed for a simpler representation of ADMs from
CERES SSF

- instead of MODIS, use of different auxiliary
variables

- found optimal subset of those variables
- viewing and illumination geometry
- land surface BRDFs and albedi
- AOD, and partly total column O3 and H2O,

as well as 10m wind

- optimized performance of Artificial Neural
Networks (uncertainty of 2.9-3.8 W /m2)

Discussion

- Why are certain aux.
variables important for the
radiance-to-flux
conversion?

- Could aerosols or atm.
gases serve as
anisotropy softener ?

- Does 10m wind change
the structure of (some)
land surfaces ?

- Or do some variables
simply serve to
discriminate regionally ?
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/ Random Forest [Breiman, 2001]

- ensemble learning method for
classification and regression

- multitude of decision trees
- therefore, correct for DT’s
tendency to overfit

- for regression: multi-dimensional
step-function (each leaf with
constant value) or continuous
(each leaf with Linear Regression
model)
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/ Identifying a subset through Random Forest Regression (not shown)

B train a multitude of decision trees with
simple linear model at each leaf
(F ∼ I + I 2)

B aux. parameters serve to create special
cases of radiance-to-flux conversion

B each split via recursive partitioning:
- test several parameters
- if and where to split to improve
- only relevant parameters used

B identify subset via permutation test:
- permutate and reassign one parameter
- re-use Random Forest
- check if significant downgrade in
performance
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/ Genetic Algorithms [Scrucca, 2009]
- simulate living organisms and their biological evolution (mutation,
crossover, seletion & elitism)

- successfully applied to search & optimization problems

B procedure:
- randomly generate population of individuals (aka. strings or
chromosomes)

- consisting of units (aka. genes, features or characters; i.e. 0/1)
- each genotype represents a solution to the optimiz. problem
- fitness evaluates closeness to optimization (here: BIC)
- exploration: creating population diversity (mutation & crossover)
- exploitation: reducing diversity by selecting fitter individuals

BIC = −2 · ln ( 1
n

∑n
i=1(yi − ŷi )

2) + k · ln (n)
with n observations and k parameters estimating ŷi
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/ Semi-empirical BRF - Ross-Li

R(θs , θo , φ,Λ) = fiso(Λ)+fvol(Λ) · Kvol(θs , θo , φ)+fgeo(Λ) · Kgeo(θs , θo , φ)

Adapted from Petty (2006) and Roujean et al. (1992)
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/ Kvol(θs , θo, φ) - Ross-Thick Kernel

Kvol(θs , θo , φ) =
(π/2− ζ) cos ζ + sin ζ

cos θs + cos θo
− π

4

with
cos ζ = cos θs cos θo + sin θs sin θo sinφ

B for large LAI-values (“thick”) with small gaps in
between leafs

B leaf facets uniformly oriented
B equal transmittance and reflectance of leafs
B above flat, Lambertian surface

Roujean et al., 1992
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/ Kgeo(θs , θo, φ) - geometric-optical Li-Sparse Kernel

Kgeo(θs , θo , φ) =
m

π
(t − sin t cos t − π) +

1 + cos ζ
2 cos θs cos θo

with
cos t = 2

m

√
∆2 + (tan θs tan θo sinφ)2

m = 1/ cos θs + 1/ cos θo
∆ =

√
tan2 θs + tan2 θo − 2 tan θs tan θo cosφ

B “sparse” spacing of objects (e.g. trees)
B randomly located spheriods with presumed 3D

proportions
B ratio of sunlit/shaded crown and ground Roujean et al., 1992
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/ Surface albedo
B ratio between hemispherical upwelling and downwelling radiative

fluxes
B classic subdivision into:

black-sky albedo αbs = αbs(θs ,Λ)

B single-beam irradiation
B directional-hemisph. integral
B function of solar zenith angle

white-sky albedo αws = αws(Λ)

B perfectly diffuse illumination in turbid atmosphere
B independent from SZA

B diffuse illumination S = S(τ(Λ), θs) determines albedo

α = (1− S) · αbs + S · αws = α(θs ,Λ, τ(Λ))
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/ Albedo-derivation from BRF (Lucht and Schaaf, 2000)
• directional-hemispherical integral

hk(θs) =
1
π

2π∫
0

π/2∫
0

Kk(θs , θo , φ) sin θo cos θodθodφ =
∑
j

gjkPj(θs)

αbs(θs ,Λ) =
∑
k

fk(Λ)hk(θs) =
∑
k

fk(Λ)
∑
j

gjkPj(θs)

• bihemispherical integral

Hk = 2

π/2∫
0

hk(θs) sin θs cos θsdθs

αws(Λ) =
∑
k

fk(Λ)Hk

B gjk , Pj(θs) and Hk precomp., fk(Λ) obs.-based, S(τ(Λ), θs) atm. state
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/ The MOD43B Level 3 product
B 7 channels in the visible (460, 555, 659nm) and near-infrared (865,

1240, 1640, 2130nm), as well as BB (VIS, NIR, total SW)
B 1km spatial and 16-day temporal resolution
B combination of Terra/Aqua MODIS and MISR to provide better

angular sampling

B MOD43B1
• atmospherically corrected reflectances
• RossLi BRF model parameters (fk(Λ))

B MOD43B2
• parameters of empirical model (Walthall)

B MOD43B3
• black- and white-sky

albedos at local noon SZA
B MOD43B4

• nadir-view reflectances for
local median SZA

B along with several quality flags (snow,water,low sample number,...)
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/ ERA 20C reanalysis

- first atm. reanalysis of the 20th century (1900-2010)

- produced with IFS version Cy38r1
- coupled Atmosphere/Land-surface/Ocean-waves model
- assimilation of surface pressure and surface marine winds only

- 91 vertical levels, 4 soil layers
- ∼125km horiz. resolution (T159)
- ocean waves on 25 frequencies, 12 directions
- 3-hourly temp. resolution
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/ Linear Regression
- in general we want to derive an intelligent machine which can predict
a value for us

y = wo + w1 · x + w2 · x2 + w2 · z + . . . = wX

yi = wo + w1 · xi + · · ·+ εi

- we believe:

- that X has a connection to y
- to understand the world with this model

- derive ŵ from Least Squares Estimate [ ŵ = (XTX )−1XT y ]
- a common quality measure is the Residual Sum of Squares (RSS):

RSS =
N∑
i=1

(y − ŷ)2 =
N∑
i=1

(y − ŵx)2
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- a common quality measure is the Residual Sum of Squares (RSS):

RSS =
N∑
i=1

(y − ŷ)2 =
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- a common quality measure is the Residual Sum of Squares (RSS):

RSS =
N∑
i=1

(y − ŷ)2 =
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- a common quality measure is the Residual Sum of Squares (RSS):

RSS =
N∑
i=1

(y − ŷ)2 =
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(y − ŷ)2 =
N∑
i=1

(y − ŵx)2
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/ Challenges

- How complex should our model be?
- Which features should be in it?
- Do I need more data and/or more features?
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TOA SW clear-sky fluxes for EarthCARE’s BBR: towards a global and time-invariant radiance-to-flux converter

/ Approach to radiance-to-flux regression

- 42 potential features for prediction
B trying all possible models: 242 comb.
B alternatively, using search algorithms:
B Genetic Algorithm [Scrucca, 2013]

- biologically motivated selection
process of variables

- selection, crossover, mutation, elitsm

- classic setup for model selection:
- within Training data (80%)

- use random data sample for GA
parameter selection

- cross-validate with remaining data
- after 100 runs, select best performing

parameter set

- apply Linear Model with optimal feature
subset to Test data
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/ Feature selection
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- repeat Genetic Selection 100 times
- pick feature subset with lowest cross-validation error
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Overview of slides
Talk

Motivation Regression Task

Overview - Results Extracted Data

Variable Importance ANN - results

Summary & Conclusions

Appendix
Random Forest Permuation Test

Linear Regression Challange BIC - Information Criterion Genetic Algorithms

Ross-Li BRF Ross thick Kernel Li sparse Kernel Albedo Defintion

Albedo derivation MODIS BRF Product

ERA 20C reanalysis

References: Albedo & BRF References: ADM

Florian Tornow ERB Workshop 2016, Reading21.10.2016 26 / 9 •


	Introduction
	Methodology & Data
	Results
	Summary & Conclusions
	Appendix

